Testing statistical hypotheses based on the density power divergence
نویسندگان
چکیده
The family of density power divergences is an useful class which generates robust parameter estimates with high efficiency. None of these divergences require any non-parametric density estimate to carry out the inference procedure. However, these divergences have so far not been used effectively in robust testing of hypotheses. In this paper, we develop tests of hypotheses based on this family of divergences. The asymptotic variances of the estimators are generally different from the inverse of the Fisher information matrix, so that the usual drop-in-divergence type statistics do not lead to standard Chi-square limits. It is shown that the alternative test statistics proposed herein have asymptotic limits which are described by linear combinations of Chi-square statistics. Extensive simulation results are presented to substantiate the theory developed.
منابع مشابه
TESTING STATISTICAL HYPOTHESES UNDER FUZZY DATA AND BASED ON A NEW SIGNED DISTANCE
This paper deals with the problem of testing statisticalhypotheses when the available data are fuzzy. In this approach, wefirst obtain a fuzzy test statistic based on fuzzy data, and then,based on a new signed distance between fuzzy numbers, we introducea new decision rule to accept/reject the hypothesis of interest.The proposed approach is investigated for two cases: the casewithout nuisance p...
متن کاملRobust Estimation in Linear Regression Model: the Density Power Divergence Approach
The minimum density power divergence method provides a robust estimate in the face of a situation where the dataset includes a number of outlier data. In this study, we introduce and use a robust minimum density power divergence estimator to estimate the parameters of the linear regression model and then with some numerical examples of linear regression model, we show the robustness of this est...
متن کاملTesting fuzzy hypotheses with vague data
The problem of testing fuzzy hypotheses in the presence of vague data is considered. A new method based on the necessity index of strict dominance (NSD) is suggested. An example hoe to apply the proposed test in statistical quality control is shown.
متن کاملTesting Several Rival Models Using the Extension of Vuong\'s Test and Quasi Clustering
The two main goals in model selection are firstly introducing an approach to test homogeneity of several rival models and secondly selecting a set of reasonable models or estimating the best rival model to the true one. In this paper we extend Vuong's method for several models to cluster them. Based on the working paper of Katayama $(2008)$, we propose an approach to test whether rival models h...
متن کاملOn the Robustness of a Divergence based Test of Simple Statistical Hypotheses
The most popular hypothesis testing procedure, the likelihood ratio test, is known to be highly non-robust in many real situations. Basu et al. (2013a) provided an alternative robust procedure of hypothesis testing based on the density power divergence; however, although the robustness properties of the latter test were intuitively argued for by the authors together with extensive empirical sub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012